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This paper is a theoretical investigation of the stable laminar decay of a fully 
established channel or pipe flow following a sudden blockage such as would be 
caused by the rapid closure of a valve or imposition of an end wall or gate. The 
development of the subsequent velocity and pressure fields is examined from the 
instant the initial pressure wave passes until the final decay of all motion. Three 
time scales of hydrodynamic interest are identified and the relevant solutions are 
obtained. The time scales are as follows: (i) a very short time characteristic of 
the passage of the pressure wave during which the velocity field adjusts inviscidly 
to the new boundary conditions imposed by the presence of the end wall, (ii) 
a short diffusion time during which the displacement interaction generated by 
the diffusion of the primary Rayleigh layer induces a substantial secondary 
motion with distinct side-wall boundary layers and an inviscid core and (iii) a 
long diffusion time during which the boundary layers fill the entire channel or 
pipe and the residual motion then dies out. The secondary flow for short diffusion 
times is of special interest in that it is an example of an unsteady boundary layer 
where the external pressure gradient and inviscid outer flow are unknown and 
determined by the integrated time history of the combined mass flow displace- 
ment generated by the primary- and secondary-flow boundary layers. The paper 
closes with some preliminary comments and experimental observations on de- 
celerating pipe flows. 

1. Introduction 
The temporal or spatial evolution of fully developed parabolic velocity pro- 

files in channels and pipes has been the subject of a number of classical and 
recent studies in the fluid-mechanics literature. The temporal evolution of a 
Poiseuille profile in a long pipe following the application of a constant external 
pressure gradient is described in Szymanski (1932) and Batchelor (1967). The 
spatial evolution of a Poiseuille profile in the entrance regions of pipes and 
channels has been studied by Schlichting (19341, Goldstein (1938), Van Dyke 
(1970) and Wilson (1971), to mention a few of the more prominent investigations. 
Interestingly, the inverse problem of bringing a fully established Poiseuille 
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FIGURE 1. Sketch of the channel showing co-ordinate system, 
location of the valve and initial profile. 

flow to rest has not been treated in the literature, to the authors’ knowledge, 
although it is of a rather fundamental nature. In  the present investigation we 
examine the laminar decay of a planar or axisymmetric Poiseuille flow following 
sudden blockage of a long channel or pipe such as would be produced by the 
rapid closure of a valve. 

Putting aside for the moment the question of stability, the unsteady laminar 
diffusion problem following the passage of the pressure wave caused by the 
blockage is considerably more subtle than the starting-flow problem for the 
pipe or channel flow mentioned above. The sudden imposition of an end wall at  
x = 0 (see sketch in figure 1) imposes the constraint that the integrated volume 
flux across the channel or pipe must vanish for an incompressible fluid. Because 
of this constraint, the motion after the passage of the pressure wave is no longer 
a simple Rayleigh diffusion problem, even far from the end wall, where it is 
reasonable to assume that the flow is still unidirectional and parallel to the 
boundaries. If one is to conserve mass with an end wall present, the displacement 
interaction generated by the diffusion of the primary Rayleigh layer must 
induce a time-varying streamwise pressure gradient which drives a secondary 
flow which just balances the volume flow defect of the primary flow. This un- 
steady secondary flow depends upon the integrated time history of the induced 
pressure field and one is led to an integral equation of the Volterra type for the 
unknown interaction pressure gradient. The approximate theoretical solutions 
obtained show that the secondary flow is an important practical consideration 
since its amplitude grows until it  is of the same order of magnitude as the 
instantaneous centre-line velocity of the primary flow. Such large changes in 
the velocity profile are obviously important when considering the laminar 
stability of the decelerating flow. A major interest of this investigation is to 
study the development of the secondary flow and its accompanying unsteady 
boundary layer. 

The authors’ interest in the present problem is of a physiological nature and 
arose in connexion with a simple flow-visualization apparatus that was con- 
structed to investigate the mechanism of laminar flow instability in decelerating 
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pipe flow. The motivation for the experiment is to explain the origin of the tur- 
bulence that has been observed during the deceleration phase of flow in the aorta 
(Seed & Wood 1971; Nerem & Seed 1972). In  the experiment the behaviour of 
dye streaks and hydrogen bubbles is observed after the sudden closure of a 
solenoid valve at  the downstream end of a horizontal straight pipe. For Reynolds 
numbers, based on diameter and mean velocity before the valve is closed, less 
than approximately 2000 a stable laminar decay qualitatively similar to that 
described herein is observed. For higher Reynolds numbers, a periodic stream- 
wise instability which grows and degenerates into turbulence is observed. The 
present paper provides the background for the theoretical and experimental 
investigation of the stability of this decelerating pipe flow. 

Simple order-of-magnitude analysis suggests that the flow behaviour following 
the sudden stoppage of a pipe or channel flow is characterized by three different 
time scales: a very short time RIG, where R is the channel half-height or pipe 
radius and c is the velocity of sound, characteristic of the passage of the pressure 
wave; a short diffusion time P / v ,  where 1’ is the kinematic viscosity and 6 is a 
thickness characteristic of the growth of the secondary-flow boundary layer; and 
a long diffusion time R21v characteristic of the asymptotic decay of the residual 
motion after the side-wall boundary layers have merged at the centre-line. 
On the shortest time scale, that of the passage of the pressure wave, one finds 
that both the convection and diffusion of vorticity are negligible for a flow 
whose Mach number is < 1.  As a result, the vorticity is essentially frozen in the 
distribution that existed before the flow stoppage and one must solve a Poisson 
equation for a rotational inviscid flow subject to the new boundary conditions 
imposed by the presence of the end wall a t  x = 0. The solution shows that the 
redistribution of the inviscid velocity field due to end effects is confined to a 
very small region near the blocked end whose length is of the order of the pipe 
diameter or channel height and that the flow everywhere else is unidirectional. 

The interesting question arises as to whether the mathematical problem is 
linear or nonlinear. The interaction between the pressure gradient and the 
displacement of the secondary-flow boundary layer is clearly nonlinear. The 
governing equations, however, are linear. It appears that the nonlinearity 
arises from the artificial separation of the secondary flow into a core and a 
boundary layer on the short diffusion time scale. The location of the edge of the 
boundary layer becomes a nonlinear function of the induced pressure gradient. 
If no dichotomy is made between core and boundary layer, the problem remains 
linear, but as will be shown, more difficult to solve in practice. 

Sudden blockage of pipes and channels is a common experience and of 
obvious practical importance. Previous interest has centred almost exclusively 
on the inviscid flow problem associated with the propagation of the pressure 
wave immediately following the obstruction of flow, for example, the propaga- 
tion of bores in open-channel flow and the so-called ‘water hammer ’ problem 
in water pipes when a valve is suddenly closed. The subsequent diffusion problem 
has received little attention and is a rather novel example of the nonlinear inter- 
action that takes place between a secondary boundary layer and a core flow 
that is its’elf driven by the displacement interaction of a primary Rayleigh layer. 
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Nonlineas problems of this nature have heretofore been principally of interest 
in periodic boundary layers with imbedded Stokes layers driven by free-stream 
fluctuations, see Stuart (1963, 1972). The present secondary-flow analysis 
differs from classical unsteady Rayleigh-layer problems (for example, the im- 
pulsive motion of a cylinder (Goldstein & Rosenhead 1936) and unsteady stag- 
nation-point flows (Kelly 1962; Tokuda 1970)) in the important respect that 
the inviscid outer flow is not prescribed. For this reason the study that is prob- 
ably of greatest relevance to the present problem is the recent analysis by Van 
Dyke (1970) and Wilson (1971) of steady entry flow in a channel, where the 
complications due to nonlinear interaction between a core flow and a boundary 
layer are also present. There is a close analogy between the three time scales in 
the present problem and three different length scales distinguished by Van 
Dyke and Wilson in the entrance region of a channel. The singular behaviour 
near the leading edge of the channel wall on the shortest length scale is analogous 
to that on the time scale characteristic of the passage of the shock wave. The 
solution on the intermediate length scale, where the boundary layers on the 
side wall are separated by an inviscid core, is analogous to the present nonlinear 
displacement interaction solution for short diffusion times. Finally the problem 
on the long length scale after the side-wall boundary layers have merged is 
analogous t o  the present problem for long diffusion times. The channel entry 
problem is further complicated by the fact that the governing equations are 
themselves nonlinear and that the core flow a t  x = 0 depends on the boundary 
conditions specified on the half-plane x < 0 and only approaches the uniform 
core behaviour assumed by Schlichting (1934) after a distance of the order of 
the channel height. However, the core velocity in the channel entry problem 
monotonically approaches its Poiseuille value and the side-wall boundary layers 
are simple Blasius layers to lowest order. In  the present problem, the core 
velocity of the secondary flow is considerably more complicated, first achieving 
a maximum on the short diffusion time scale and then undergoing a long decay 
to zero. Furthermore, the side-wall boundary layers are not simple Rayleigh 
layers to lowest order because of the non-uniformity of the core flow. 

Section 2 describes the inviscid adjustment in the core following the passage 
of the pressure wave. Sections 3 and 4 describe the solutions to the secondary- 
flow diffusion interaction problem for channels and pipes respectively and $5 
presents the important numerical results. 

2. Core motion following passage of pressure wave 
In  this section we examine the solution for the velocity dist'ribution in the 

interior of a channel or pipe on the short t'ime scale Rlc immediately after the 
passage of the pressure wave caused by the instantaneous blockage of the flow 
at the plane x = 0. If one introduces the dimensionless variables t* = ct/R, 
w* = Rw/U, u* = ul0 and V* = RV into the Navier-Stokes vorticity equation 
one obtains after dropping the asterisks 

- M  -- a~ MV x u x w  = - V X V X W ,  
at Re 
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where JI = U/c,  Re = URfv and U is the centre-line velocity of the fully estab- 
lished Poiseuille profile just prior to the sudden stoppage of the flow at x = 0. 

It is evident from (2.1) that if the Mach number M < 1 and M/Re < 1 then 

awlat = 0. ( 2 . 2 )  

Since the passage of a normal shock wave does not itself generate vorticity 
(vorticity generation due to wave refraction is a third-order effect for oblique 
shock waves) one concludes from (2 .2 )  that during the short time interval 
following the passage of the shock wave the vorticity is essentially frozen in the 
channel or pipe and has the same distribution as existed with the undisturbed 
parabolic velocity profile before blockage. Thus, the passage of the shock wave 
and the introduction of the solid boundary at x = 0 cause an almost instantaneous 
change in the velocity distribution which allows the fluid motion to accommodate 
its new boundary conditions without changing its vorticity distribution. This 
change occurs as an impulsive acceleration which is inviscid since viscous diffusion 
has had no time to act. 

In  view of these comments the new velocity distribution immediately after 
the passage of the shock wave satisfies the equation 

(2.3) 

where o ( 0 - )  is the vorticity distribution in the undisturbed flow. The new boun- 
dary conditions with the end wall present are 

v x u = o ( 0 - ) ,  

u=O on x = O ,  

v = O  on y = c l  or r = l .  
(2.4) 

The boundary conditions (2.4) are appropriate only for inviscid flow and lead 
to a solut,ion of (2.3) which permits tangential velocities or, equivalently, 
infinitesimally thin vortex layers at the walls. The passage of the shock wave, 
in that it provides an infinite acceleration, is equivalent to an impulsive non- 
uniform motion of the boundary. The solution of (2.3) and (2.4) thus provides 
the initial conditions on velocity for the ensuing Rayleigh diffusion, displacement 
interaction problem, which occurs on a longer time scale. The almost instan- 
taneous change in the velocity field just described may be readily observed using 
hydrogen-bubble flow-visualization techniques. 

2.1. Initial velocity distribution for planar Poiseuille $ow 

For two-dimensional incompressible flow it is convenient to introduce a stream 
function for the velocity: u = V x $ k ,  

where k is a unit vector perpendicular to the plane of the motion. The dimension- 
less undisturbed planar Poiseuille velocity distribution is given by 

u =  1-y2. (2 .6)  

V2$ = -2y.  (2-7) 

Using (2 .5)  and (2.6), (2.3) reduces to the Poisson equation 
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FIGURE 2. Solution near the end wall after the passage of the pressure wave for an initially 
planar Poiseuille profile. (a) Streamlines. (b )  u profiles at various values of 2. (c) a profile at  
various values of y. 

The solution of (2.7) which satisfies the boundary conditions (2.4) is obtained 
by straightforward methods: 

4 w ennx 
y? = + z ~ ( l - y ~ ) + -  Y -sinnny. (2.8) 

The streamlines and the x and y velocity components u and v obtained from 
(2.5) and (2.8) are shown in figure 2, where the dimensionless x co-ordinate is 
based on the channel half-height. It is evident from this figure that the vertical 
velocity component due to end effects vanishes for all practical purposes within 
a single channel height from the end wall and that the u profile equally rapidly 
approaches a displaced planar Poiseuille velocity distribution with a dimension- 
less slip velocity of - % at the boundary and a centre-line velocity of Q. Thus, 
away from the end wall the effect of the pressure wave is simply to decelerate 
instantaneously the entire velocity profile by an amount equal to the mass- 
average velocity for the initial undisturbed planar Poiseuille velocity distribution. 
In this manner the pressure wave instantaneously adjusts the mass-average 
velocity of the channel flow to zero so as to satisfy the mass-conservation require- 
ment imposed by the end wall. 

n3,Y1 n3 
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2.2. Initial velocity distribution for axisymmetric Poiseuille JIOUI 
For axisymmetric incompressible flow the stream function is defined by 

u = V x $tp, (2.9) 

where + is a unit vector in the azimuthal direction. The dimensionless undis- 
turbed parabolic profile is the same as (2.6) but with y replaced by r,  the radial 
co-ordinate. Using these results in (2.3) one obtains 

ykr, +- r-lII., - r-2$ + $zz = - 2r.  (2.10) 

Equation (2.10) is not of the simple form of (2.7) since the stream function 
for irrotational axisymmetric flow does not satisfy Laplace's equation. The 
solution of (2.10) which satisfies the boundary conditions (2.4) can nonetheless 
be determined by straightforward separation-of-variables methods. This solu- 
tion is 

where the pn are the zeros of the first-order Bessel function, i.e. Jl(pu,) = 0, and 
the constants c, in the Fourier-Bessel series are given by 

cn = 41~; J&n). (2.12) 

The solution for t'he velocity components derived from (2.11) is qualitatively 
similar to that already shown in figure 2 for the initial velocity distribution 
following the passage of the shock wave in the channel-flow problem. In figure 3 
the development of the centre-line velocity, the slip velocity along the lateral 
boundary and the decay of the radial velocity component a t  r = 4 are plotted 
as functions of dimensionless distance from the end wall and compared with 
the equivalent results for the channel. The dimensionless centre-line and wall 
velocities now approach 4 and - + respectively. Thus, away from the end wall 
the pa.rabolic Poiseuille profile for fully established pipe flow is decelerated by 
half the cent.re-line velocity after the passage of the shock wave. This is the mean 
flow velocity for incompressible Poiseuille flow in a pipe. 

3. Decay of planar Poiseuille flow 
It is evident from the solutions presented in $ 2  that fully two-dimensional 

flow is confined to a region extending a distance of the order of a channel height 
from the end wall. Outside this region the flow, at least immediately after the 
passage of the shock wave, is unidirectional. This flow is equivalent to that which 
would result if the boundaries of the channel were impulsively accelerated in the 
direction of the original motion to a velocity two-thirds of the original centre- 
line velocity. 

The locally two-dimensional motion near the end wall is of little importance 
to t,he flow outside this region and will not be discussed further in this paper. 
The presence of the wall, however, does have a profound effect on the evolution 
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FIGURE 3. Streamwise velocity a t  the centre-line and at  the wall and cross-stream velocity 
a t  the midpoint after the passage of the pressure wave. ---, channel; - - -, pipe. 

of the flow throughout the rest of the channel. The impenetrability of the end 
wall and the incompressibility of the fluid require that the integrated volume 
flux across any cross-section must vanish: 

udy = 0. s,' 
The net volume flow result,ing from the thickening Rayleigh layer is turned back 
by the end wall, generating a time-dependent pressure gradient which then 
becomes the driving force for the secondary motion. The remainder of this 
section is devoted to developing an approximate solution to this secondary- 
flow problem which is uniformly valid for all time. 

Assuming that the Reynolds number is sufficiently low for a stable unidirec- 
tional flow to persist, the dimensionless Navier-Stokes equation governing the 
ensuing motion is 

U t  = u y y  + Q'(Y). (3.2) 

Here $'( t )  = ( -A2/,uU) dP/dx is an unknown time-dependent dimensionless 
pressure gradient and the time scale has been redefined as t* = vt/R2 so that all 
the coefficients in (3.2) are unity. The initial and boundary conditions for (3.2) 
are 

g-y2 a t  t = 0, (3-3) 
0 on y = + l  for t > 0 ,  (3.4) 

u={ 
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where (3.3), the initial condition for the decay of the motion on the diffusion 
time scale, is obtained from the asymptotic behaviour of (2.8) for large x. 

One now seeks a solution of the boundary-value problem posed by (3.2)- 
(3.4) which satisfies the integral constraint (3.1). The fundamental difference 
between this problem and the one encountered in classical unsteady boundary- 
layer analysis for either channel or pipe flow is that the pressure-gradient term 
$'(t) in (3.2) is not prescribed but is an unknown function to  be determined by 
the integral condition (3.1). 

The new boundary-value problem just formulated, although involving a mass 
flow displacement interaction, is still linear since u appears linearly in (3.1). 
It is convenient therefore, bot,h conceptually and mathematically, to write the 
solution for u as the sum of two functions 20 and v representing the primary and 
induced velocity fields : 

U(Y7 t )  = W(Y, t )  + v(y7 t ) .  (3.5) 

The function w, the primary velocity, satisfies the homogeneous equation 

lPt = Wyy (3.6) 

and the inhomogeneous initial and boundary conditions 

3-y2  at t = 0, 

0 on y = ? l  for t > 0 .  
2 0  = 

One recognizes that this auxiliary boundary-value problem is, except for a 
constant displacement, simply the Rayleigh diffusion problem that would 
result if the walls of a channel containing a planar Poiseuille flow were impul- 
sively accelerated to two-thirds of the initial centre-line velocity. The solution 
to (3.6)-(3.8) is 

1 nn 
Ul = 2 W (--l)&(m-l)(') ( - - + L ) e x p (  -(?)'t)cosTy. (3.9) 

n=l,3,  ... 3 n2n2 

The integral of (3.9) gives the volume flow defect produced by the diffusion of 
the primary Rayleigh layer: 

wdy=  ;r, - - 
n=l,3,  ... n2n2 ( n2n2+- -' i) exp ( -(7I2t) = - f ( t ) .  

* 
(3.10) 

This volume flow defect is a function of time and will henceforth be referred to 
as the primary-flow displacement function f ( t ) .  Note that f ( t )  < 0 as defined 
above and the retarded flow near the boundaries is in the - x direction. 

The function v in (3.5), the secondary or induced velocity, satisfies the inhomo- 
geneous differential equation and the homogeneous boundary and initial 
conditions 

vt = vyy + $'W, ( 3 . i i )  

for all y a t  t = 0, 

on y =  2 1  for t > 0. 
v = o (  

(3.12) 

(3.13) 
47 F L M  69 
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Also, from (3.1), (3.5) and (3.10) 

S. Weinbaum and K .  H .  Parker 

(3.14) 

Equations (3.11)-(3.14) constitute the boundary-value problem for the unknown 
function #'(t) ,  i.e. the induced pressure gradient that drives the secondary 
motion. 

At first glance it might appear that the simplest procedure for solving (3.11)- 
(3.14) is to first determine w as a function of $ by solving (3.11)-(3.13) and then 
solve the integral equation for $( t )  that emerges after substituting this expression 
for w in (3.14). We shall briefly summarize this procedure and describe the mathe- 
matical difficulties inherent in this approach since this provides insight into and 
t'he motivation for the boundary-layer approximation procedure finally adopted. 

Equations (3.11)-(3.13) can be readily solved using either Duhamel-integral 
or Laplace-tra,nsform methods in which $ is treated as an unknown but arbit.rary 
function of time. The desired expression for v is 

m 

w(y, t )  = $( t )  + 3( - I ) n  (n  - +) n@(n,, t )  cos (n - Q) ny, (3.15) 
7 & = l  

where 

Substituting (3.15) into (3.14), one obtains after performing the y integration 

m r f  
(3.16) 

Equation (3.16) is a linear integral equation of the Volterra type involving an 
infinite series of integrals containing the unknown function $. 

The difficulties encountered in obtaining a uniformly valid solution to (3.16) 
using analytical methods are formidable. This is due in large measure to the 
complexity of the primary displacement function f ( t ) ,  which is plotted in figure 
6. One observes that the simple similarity growth characterist'ic of a Rayleigh 
layer on a flat plate of infinite extent, that f ( t )  is proportional to t:, is valid for 
only a very small portion of the entire motion, roughly till t is of order 0.01. 
The interesting feature exhibited by the displacement growth of the primary 
motion is thatf(t)  rapidly achieves a maximum and then asymptotically decays 
to zero on a time scale that is more than an order of magnitude longer than the 
initial growth period. This behaviour suggests that the primary Rayleigh layer 
quickly spreads to  the centre-line of the channel and then undergoes a much 
slower decay before all motion subsides. From (3.10) and (3.14) one can attach 
a simple physical interpretation to f ( t ) :  it is the integral average velocity of 
the secondary flow required to balance the mass flow defect of the primary 
motion. Thus, at peak amplitude, when f ( t )  = 0-087, the mean secondary flow 
velocity is 36 yo of the maximum centre-line velocity of the primary flow. The 
ratio of the instantaneous centre-line velocit'ies of the secondary and primary 
flows is significantly greater than this. 
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The form of (3.16) indicates that Q is equal to f plus a boundary-layer-like 
correction due to the exponential integrals in the infinite sum. For very small 
times no single exponential integral in (3.16) dominates whereas for large times 
the function Q(7) in the integrand is far larger than the function f (7 ) .  This beha- 
viour prevents the solution of (3.16) using standard techniques. The structure 
of (3.16), however, suggests that an approximate solution of (3.11)-(3.14) might 
be obtained by dividing the secondary flow into an inviscid core motion and 
two side-wall boundary layers when the thickness 6 of the secondary-flow 
boundary layers is less than one. 

I n  accord with these remarks we approximate (3.1 1)  in the inviscid core by 

Vt = Q'(t), 0 < y < 1-6, (3.17) 

and seek an approximate solution to the full equation (3.11) in the region 
1 - 6 < y < I using momentum-integral methods. Since Q(0) = f(0) = 0 the 
solution of (3.17) is 

Q ( t )  = v ( t ) ,  0 < y < 1-8.  (3.18) 

The function Q ( t )  is, therefore, the uniform core velocity of the secondary flow 
when 8 < 1. If one now defines the displacement thickness of the secondary-flow 
boundary layer as 

6" =I1 1-6 ( I - +  (3.19) 

the integral condition (3.14) can be written in the compact form 

q5 - f = 6.Q. (3.20) 

$ thus differs from f, the mean velocity of the primary flow, because of the dis- 
placement effect of the secondary-flow boundary layer. 

The momentum equation for the secondary-flow boundary layer is obtained 
by integrating (3.11) across the layer and applying results (3.18) and (3.19). 
This gives 

(a*$)' = -Vy(1), (3.21) 

where v,(l) is the dimensionless shear stress a t  the top boundary. The value of 
vJ l )  can be related to 6, q5 and the pressure gradient $' through the selection 
of a suitable family of velocity profiles. The arbitrariness of this selection is 
of course the intrinsic weakness of the momentum-integral method. For the 
present boundary-layer flow the meaningful velocity boundary conditions are 

v = 0, vyy = -Q' ( t )  on y = 1, (3.22a, b )  

v = Q ,  v y = v y y y = O  on y =  1-6. (3.22 c-e ) 

Except for the edge condition (3 .22e ) ,  these are the same as the boundary condi- 
tions for the well-known Pohlhausen velocity profile. In  the present instance it 
is logically more consistent to satisfy the condition on the third derivative, 
since it is an exact description of the boundary-layer equation a t  the edge of 
the layer [note that vyt = 0 in view of (3.22d)], than to let vyy vanish, which has 
no rational justification. Also, as 6 --f 1, vlly does not vanish whereas vyYu does, 
from (3.11), in view of the symmetry condition at the centre-line. 

47-2 
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FIGURE 4. Boundary-layer profiles for various values of the shape parameter A. 

The fourth-order polynomial velocity profile that satisfies the conditions (3.22) 

(3.23) is 

where 7 = ( I  -y) /S( t ) ,  A = S2$'/$. (3.24) 

This dimensionless velocity profile, when writ'ten in terms of the scaled co- 
ordinate 7, is a fkction of the single parameter A defined in (3.21). Profile 
shapes for typical values of A are shown in figure 4. For A < - 8 reverse flow 
occurs whereas for A > 12 a velocity overshoot is obtained in the boundary 
layer. In contrast to the case for fourth-order Pohlhausen profiles for steady 
flow, the latter behaviour is meaningful for unsteady boundary layers. As is 
well appreciated for pipe flows with periodic pressure gradients, the flow near 
the wall and the flow near the edge of the boundary layer respond differently 
to a time-varying applied pressure gradient owing to their different inertias. 

Given (3.23), the right-hand side of (3.21) may readily be computed. One finds 

./$J = (t + QR) 7 - + ($A - 8 )  r3 + (Q -&A) r4, 

d gg, w -(a*$) = --+--. 
dt 5 s  5 

(3.25) 

The relationship between 6" and 6 is obt'ained by substituting the expression 
(3.23) for the velocity profile in (3.19) and integrating: 

(3.26) 
S" - = &(9-+A).  
6 



Laminar decay of suddenly blocked channel and pipe ,flows 741 

Equations (3.20), (3.25) and (3.26) comprise a system of three algebraic and 
differential relations for the three unknown functions 6, S* and q5. 

The solution of (3.20), (3.25) and (3.26) can be further simplified. Eliminating 
S* gives 

@ - f = - 1 8 3  7 5  (3.27) 

q5t - f '  = ; # / I 3  + (3.28) 

Each of these equations can now be solved for 4' in terms of 4,s and f. Equating 
these last two results, one can show, after some algebra, that 

(27 - 78) Sf- S3f' 
q5-f = 75 - 428 f 7s2 

(3.29) 

Equation (3.29) is a convenient formula relating q5 and 6 since the function f is 
known from (3.10). 8 and q5 can be determined as functions of time by solving 
any two of the three equations (3.27)-(3.29) subject to the initial condition 
q5(0) = 0. In  the present paper a simple marching procedure in which (3.28) was 
integrated numerically to find the value of q3 at the next time step was used. 
This new value of q5 was then substituted in (3.29) and the resulting cubic equa- 
tion for 6 solved. This numerical integration, however, is not straightforward 
since (3.28) is singular a t  the origin and the physically meaningful root for 6 
must be selected when there is more than one positive real root. These difficulties 
will be discussed shortly. 

An intriguing feature of (3.27) and (3.28) is that they are nonlinear whereas 
the exact integral equation (3.26) is linear. The nonlinearity is an artificial one 
and arises because the division of the secondary flow field into an inviscid core 
with side-wall boundary layers introduces a new unknown, the location S of 
the boundary-layer edge, which depends nonlinearly on q5. One observes that 
both (3.27) and (3.28) would be linear if 6 mere prescribed. When the side-wall 
boundary layers have diffused to the centre-line 6 = 1 of the channel, the prob- 
lem once again becomes linear. Equations (3.27) and (3.28) are, however, no 
longer valid since (3.18) does not apply and the formulation must be modified 
as described in § 3.2.  

3.1. Analytic solution for  small diffusion times 

One encounters difficulties in the numerical integrat,ion of (3.28) and (3.29) for 
small times because of the singular nature of both q5r and f '  as t approaches zero. 
This problem can be circumvented by developing an analytic solution which is 
valid for small times. 

In  accord with the well-known behaviour of impulsive Rayleigh diffusion 
boundary layers, it is reasonable to assume infinite series solutions for q5, f and 
S of the forin 

f$ = y50t++y5, t f f$2t%+.. . ,  (3.30 a)  

f = fo t4 +f i t  +f2d + . . . , (3.30b) 

8 = s0tB+8,t+8,tt+ ..., ( 3 . 3 0 ~ )  
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where the #i, f i  and Si are unknown constant's. Insert'ing these assumed forms 
of the solution into (3.27) and (3.28) one obtains the following lowest- and second- 
order equations relating t'he various coefficients : 

q50 - f o  = 0 a t  lowest order, (3.31) 

Thus at lowest order one finds that #,, = f o .  This indicates that to lowest 
order the secondary-flow boundary layer can be neglected and that t,he core 
velocity of the secondary flow is the same as the mean velocity defect, of the 
primary Rayleigh layer. It is at second order that the displacement interaction 
between the secondary-flow core motion and boundary layer first occurs. Equat- 
ing (3.32a) and (3.336) one obtains an eigenvalue equation for So: 

S: - 398; + 240 = 0. 

The positive real roots of (3.33) are 6, = 8.767 
solutions for and 6, are 

l 6 + 6 $  A =Ti&- f o  +f l ,  

6( 80 - 1 7 4  + 8:) 
6, = 

(810 - 1 16;) 6, f o  * 

(3.33) 

and 5-600 respectively. The 

(3.34a) 

(3.34b) 

To O(t:) the solution for the velocity profile shape factor defined in (3.24) is 

A = +S$ + (So 81 - iS$ #l/#o) t* + . . . . (3.35) 

The constants f o  and fi in (3.34) still need to be determined. f ( t )  is given by 
(3.10), which is not in a form which can be easily evaluated for small times. 
There is, however, a well-known procedure for obtaining an approximate solu- 
tion to this type of diffusion problem which is valid a t  small times (refer, for 
instance, to Carslaw & Jaeger 1959). This involves finding the solution of the 
Laplace transform of the basic equation (3.6) and expanding that solution in a 
series valid for large values of the transform variable. This series can be inverted 
term by term to give a solution of the original equation which is valid for small 
times. The present case is slightly complicated because it is an integral of the 
solution of the equation which is desired and it is convenient to do the integration 
before performing the inverse transform. However, the procedure is easily 
applied, with the result 

4 tt--2t+vn+... st8 . 
f=,t:, (3.36) 

The first two terms of this series are plotted in figure 6 along with the value off 
obtained by summing t,he first fifty terms of the series (3.10). It appears that  
with only two terms ret'ained the expansion (3.36) is valid for times less than 0.01. 
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All of the unknown constants in the first two terms of the locally valid series 
solutions ( 3 . 3 0 )  have now been determined except for choosing between the two 
possible values of 6, in (3 .30 ) .  From (3 .35 )  the two possible initial values for the 
velocity shape factor are A(0) = 3.83 and 15.67. The larger value corresponds 
to a velocity overshoot in the boundary layer, which is physically implausible 
for a boundary-layer flow whose driving pressure force does not reverse direction. 
Thus the smaller root, So = 2-767, must be chosen. The small time solutions 
(3 .30 )  for fi and S are 

Q = 1*128th + 1.035t + O ( t t ) ,  ( 3 . 3 7 ~ ~ )  

6 = 3.767t4 + 0.0251t + O(tg). (3 .373)  

3 .3 .  Analytic solution for large diflusion times; 6 = 1 

Equations (3 .27 )  and (3 .28 ) ,  or (3 .20 ) ,  (3 .25 )  and (3 .36 ) ,  from which they were 
derived, are no longer valid once 6 = I since a distinct inviscidly behaving core 
region no longer exists. The secondary-flow boundary layers have merged at  
the channel centre-line and the function $ no longer corresponds to the uniform 
core velocity of (3 .18) .  Much of the analysis is, however, easily modified if one 
lets the channel centre-line velocity V play the role of the core velocity $ when 
6 < 1. Thus, if one replaces q5 by V in (3 .19)  and changes the lower limit of inte- 
gration to zero, one has a continuous definition for 6” : 

(3 .38)  

The integral condit,ion (3 .14 )  can be written using (3 .45 )  as 

V- f  = V6* (6 = 1) .  (3 .39)  

The momentum-integral equation derived from (3 .11 )  that replaces (3 .21)  is 

$’-f’ = - y/(1) (6 = I ) ,  (3 .40 )  

while the boundary conditions on the velocity profile used to calculate vu( 1)  are 
unchanged from (3 .22 )  except that ( 3 . 2 2 ~ - e )  are applied a t  the channel centre- 
line, where y = 0 and w = ?’. The velocity profile (3 .23)  is therefore the same 
except that $ is replaced by V and 7 and A are redefined as 

~ = l - y ,  A = $ ‘ / V  ( 6 ~ 1 ) .  (3 .41 )  

Equation (3 .40 )  thus becomes 

$‘-f‘.= &(8V+$’) (6 = 1) 

($* = -9- --1-$’/V. 
and 8* in (3 .38 )  is given by 

2 5  7 5  

(3 .42)  

(3 .43 )  

Equations (3 .39 ) ,  (3 .42 )  and (3 .43 )  provide three algebraic relations for $, V 
and 6*. The solutions for $’ and V are 

$1 = 3 f + $ f ’ ,  T i  = S f -2 - f ’  4 0  (3 .44 ) ,  (3 .45 )  

while 6“ is given by (3 .43 )  with 

A = $‘/V = ( 1 2 0 f + 4 8 f ’ ) / ( 6 0 f - f ’ ) .  (3 .46 )  
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FIGURE 5. (a)  Calculated shape parameter as a function of time after valve closure. ( b )  
Calculated boundary-layer thickness as a function of time. -,- channel ; - - -, pipe ; 
* * * a ,  analytical solution for small times. 

-- Y 

I 

0 0.1 
0.4 0.8 1.2 1.6 2.0 

t 

WIGURE 6. Calculated centre-line velocity and primary-flow displacement f as functions of 
time after valve closure. Note break in time scale. __ , channel ; - - -, pipe ; . . . ., ana- 
lytical solution for small times. 
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Note that these solutions for the induced pressure gradient Q’ and the centre- 
line velocity V are both linear functions off and its derivative. 

The results of the analysis for the secondary velocity are summarized in 
figures 5 and 6. The boundary-layer thickness 6 and shape factor A are shown 
in figure 5. Also plotted are the first two terms of the small time solutions (3.37). 
The boundary layers grow until they merge at t = 0.131. The shape factor 
decreases from its initial value and for large times approaches an asymptote 
A = 0.02505. This asymptote corresponds to the time when all but the lowest 
mode of the primary velocity (3.9) are damped out and the motion decays in a 
similar way. 

The values off and V ,  the centre-line velocity (remember that V = Q for S < l) ,  
are shown in figure 6. Note that the time scale along the abscissa has been broken 
a t  t = 0.2 to magnify the detailed structure of the solution for small times. V 
grows with f for small times but continues to grow after f reaches its peak until 
the boundary layers merge a t  t = 0.131. The maximum value of V ,  which is 
the maximum value of the secondary velocity, is 0.126. This is 38% of the 
maximum primary velocity a t  the centre-line and indicates the importance of 
the secondary velocity in determining the physical velocity u. After the boundary 
layers merge, V decreases asymptotically to zero. 

4. Decay of axisymmetric Poiseuille flow 
The flow in a pipe is qualitatively identical to that in a channel. However, 

because of the geometrical differences, the equations, boundary conditions and 
hence solutions differ from those presented for planar Poiseuille flow in 8 3. 

I n  the region far enough removed from the end wall for the flow to be uni- 
directional, the governing equation equivalent to equation (3.2) for the planar 
case is 

with the initial and boundary conditions 

(4.1) Ut = r-l(Yur)r + Q’(t) ,  

~- r2 a t  t = 0,  

0 on r =  1 for t > 0. 
u = {  

(4.2) 

(4.3) 

The velocity field u is again separated into primary- and secondary-flow 
velocity components w and v as in (3.5). The primary velocity w, which satisfies 
the homogeneous equation and inhomogeneous boundary conditions derived 
from (4.2) and (4.3), can be found straightforwardly: 

where the A, are the ordered zeros of the zero-order Bessel function, i.e. 

Jo(A,) = 0. 

The axisymmetric primary-flow displacement function is defined as 

(4.4) 

(4.5) 
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and can be evaluated using (4.4): 

8. Tt’einbaum and K .  H .  Pa,rker 

“ I  
f ( t )  = 2 I: -(1-8/A:)exp(-h7Lt). 

n = l  A: 

Equation (4.6) is the axisymmetric counterpart of (3.10). 
The secondary velocity v satisfies an inhomogeneous equation and homogeneous 

boundary conditions which are the axisymmetric equivalents of (3.11)-(3.13) 
and, in addition, the integral condition 

(4.7) 

When 6 < 1, this problem is solved approximately by dividing the secondary 
flow into a core in which the viscous terms are negligible and a region of thickness 
6(t) near the wall in which viscosity is important. I n  the core, (4.1) with the 
viscous term omitted integrates simply to  give v = $(t).  One assumes as in the 
channel case that the secondary-flow velocity profile in the boundary-layer 
region near the wall can be represented by a fourth-order polynomial in the 
scaled co-ordinate y = (1 - r)/S. The coefficients of this polynomial are deter- 
mined by the following conditions imposed on the velocity profile a t  the wall 
and at the edge of the boundary layer: 

I v = 0, V ~ ~ - S V ~  = Sz$‘(t) a t  y = 0, 

0 = $(t) ,  VT = vv’lT = 0 a t  7 = 1. 

Here $( t )  is the uniform core velocity at  the outer edge of the secondary-flow 
boundary layer. Conditions (4.8) lead to the profile 

v 8 + A  86-5A -4 (1+6)+2A 2(1+6)-A 
_ -  $ - m y + - - -  5+6  713+ 2 ( 5 + 6 )  T4> (4.9) 2(5 + 6)  

where A is the shape factor Sz$’/$. Notice that this profile depends upon two 
parameters, A(t) and 6(t),  and is thus more complex than the profile in the 
channel case, which depended only upon A. 

Defining the displacement thickness for the axisymmet,ric secondary-flow 
boundary layer by 

(4.10) 

relating this definition of 6* to the primary-flow displacement function f ( t ) ,  

2$rdr = 2vrdr = f ( t ) ,  (4.11) so’_,* s: 
and evaluating (4.10) using the profile (4.9) leads to the two equations 

$&*(I - 16% 2 1 = $($-f), (4.12) 

1. (4.13) 
96 - 456- 1162 + ( 2  - $6) A [ 3 0 ( 5 + 6 )  

6*( 1 - @*) = 6( 1 - p) - 6 
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Integrating the momentum equation across the boundary layer and using (4.9) 
to evaluate the shear stress a t  the wall leads to the equation 

(4.14) 

Equations (4.12)-(4.14) are equivalent to equations (3.20)) (3.26) and (3.25) for 
the channel case. 6* in the former three equations appears only in the combi- 
nation 6"( 1 - QS*) and is thus readily eliminated. The final results equivalent to 
(3.28) and (3.29) are 

(4.15a) 

3A 35 f 27 A 
83+ --- &2+ - I-- ---- S+- I-- = 0. (4.15b) 

(16 2 )  (?( q5) 2 2 )  ?( i )  
The solution of (4.15) valid for 6 < 1 is found in a manner that is entirely ana- 
logous to the integration of (3.28) and (3.29) described in the last section. 

The analytical solution for small times is similar to  that presented in 5 3.1. 
I n  fact, after taking into account the difference in the initial velocities at  the 
wall (w = - 5 in the channel, - Q in the pipe) the lowest-order solutions are 
identical. The difference in the geometries is reflected in the O(t )  terms. 

After the core has vanished, S = 1 and the analysis must be modified as de- 
scribed in $3.2.  The velocity profile (4.9) is unchanged except that S = 1 ,  Q is 
now the axial velocity V and A is redefined as q5'/V. We give only the final re- 
sults equivalent to equations (3.44) and (3.45) for the channel-flow case: 

$5' = 8 f  +y, v = 2f--L 2 4 f  ') (4.16), (4.17) 

while S* is given by (4.13) with 6 = 1 and 

A == 32(6f+f')/(48f-ff). (4.18) 

Equations (4.16) and (4.17) are linear, again illustrating that the nonlinearity 
exhibited by the solutions for Q < 1 is the result of artificially dividing the prob- 
lem into two regions: the boundary layer and the core. 

The equations for the axisymmetric case have been solved numerically and 
the results are shown in figures 5 and 6 along with those for the channel. The 
chief differences are that, as expected, the boundary layers merge a t  a slightly 
smaller time, t = 0.103, and the maximum secondary velocity is considerably 
higher, 0.156. Similarly, the motion decays more quickly than in a channel. 

5. Results and discussion 
Having determined the transient behaviour of the secondary-flow velocity 

profile shape parameter A and boundary-layer thickness S, see figure 5 ,  it is now 
a simple matter to calculate the time evolution of the actual velocity profile 
u(y, t ) .  From (3.5), ZL is the superposition of the primary velocity profile u) given 
by (3.9) or (4.4) and the secondary velocity profile w given by (3.23) or (4.9) for 
fully developed channel or pipe flow respeet>ively. These results are shown in 
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FIGURE 7 FIGURE 8 
FIGURE 7. Velocity profiles in a channel a t  various times after valve closure. w = primary 
velocity, TI = secondary velocity, u = total velocity. 0 ,  point of inflexion; BL, edge of 
boundary layer. (a )  t = 0.001; ---, initial profile. ( b )  t = 0.01. (c) t = 0.1. 

FIGURE 8. Velocity profiles in a pipe a t  various times after valve closure. w = primary 
velocity, 2, = secondary velocity, 21 = total velocity. 0 ,  point of inflexion; BL, edge of 
boundary layer. Each inset shows the boundary-layer profile. (a )  t = 0.001 ; - - -, initial 
profile. ( b )  t = 0.01. (c) t = 0.1. 

figures 7 and 8, where the primary- and secondary-flow velocity profiles are 
shown separately as well as their sum u. Since the normalized axisymmetric 
secondary-flow boundary-layer profile depends on both 6 and A from (4.9), the 
simple one-parameter description shown in figure 4 for channel flow is not 
sufficient, and the detailed secondary-flow boundary-layer velocity profiles for 
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the pipe-flow geometry are shown as inserts in figure 8. Also indicated in the 
figures for both cases are the instantaneous locations of the outer edge of the 
secondary-flow boundary layer and the point of inflexion in the total velocity 
profile. 

At t = 0.001 (figures 7 a  and 8a)  the primary- and secondary-flow velocity 
boundary layers are confined to a thin region near the wall. The most noticeable 
deviation from the initial velocity profile is due to the effect of the no-slip 
condition at  the wall on the diffusion of vorticity in the primary velocity profile. 
The secondary velocity is very small and distributed uniformly throughout 
almost the entire interior of the channel or pipe. At t = 0.01 (figures 7 b  and 8b) 
the secondary velocity has increased to roughly 20% of the instantaneous 
centre-line velocity of the primary velocity profile and the secondary-flow 
boundary layer has a significant influence on the shape of the total velocity 
profile. Also, small deviations due to Rayleigh diffusion are noted between the 
primary and initial velocity profiles near the centre of the channel or pipe. This 
remark also applies to the secondary flow, where the clear dichotomy assumed 
in the theory between an inviscid core and a viscous boundary layer is not 
rigorously valid as 6 approaches unity. The abrupt change in slope of the solution 
for Vq which is observed in figure 6 at the instant that S = I is a manifestation 
of this shortcoming of the theory. In  reality, the effects of diffusion are always 
present in the core and the transition from the solution for short diffusion times 
(6 < 1) to that for long diffusion times (6 = I)  is gradual. At t = 0.1 (figures 7 c  
and 8 c )  the secondary-flow boundary layer has nearly filled the entire channel 
or pipe and the induced and primary velocity profiles are of roughly the same 
order of magnitude, differing primarily in their shape. For still larger times the 
w profile is dominated by its lowest-order decaying mode, a parabola, while the 
v profile approaches a self-similar behaviour in which A approaches the value 
0.02505. For these large times the accuracy of the solution for the u profiles is 
strongly dependent on the accuracy of the approximate fourth-order poly- 
nomial description of the secondary-flow profile since u) and v differ by only a 
small amount. When v is significantly less than w the inaccuracies in the solution 
for u introduced by the polynomial approximation for v are obviously less 
critical. One can find a solution for very large times more accurate than that 
found here by solving the integral equation (3.15)) retaining only the lowest- 
order term in the infinite series solution for w and then matching at  an appro- 
priate time with the present solution. In  view of the small amplitude of the 
residual motion at  these very large times this asymptotic analysis is of little 
practical value and was not attempted. 

Since this study was motivated by an interest in the stability of decelerating 
flows, i t  seems fitting to conclude with some comments on the stability of the 
laminar solutions just described. The full stability analysis of this time-varying 
flow is, of course, very difficult. However, with the guidance of previous stability 
studies of mathematically related problems and the preliminary experimental 
results, it  i s  possible to make some superficial observations. A more detailed 
quasi-steady analysis of the stability of the instantaneous u velocity profiles is 
currently in progress. 
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FIGURE 9. Locations of the point of inflexion and the point of zero velocity as functions 
of time after valve closure. (a) Channel. ( b )  Pipe. -, point of inflexion; - - - , point of 
zero velocity. 

From the point of view of stability, the most notable feature of these flows is 
the existence of an inflexion point in the u profile. Inflexion points are, of course, 
points of instability in steady inviscid flows and experience has shown that 
they are points of particular interest in viscous stability studies. One well- 
studied stability problem which appears to have special relevance to the pre- 
sent flow is the instability of the Ekman boundary layer on a rotating disk. 
Theoretical and experimental investigations by Gregory, Stuart & Walker 
(1955), Faller (1963), Lilly (1966) and others have shown that the dominant 
mode of laminar instability when the Reynolds number is greater than 125 is 
a wave which is nearIy stationary relative to the surface of the disk and which 
takes the form of spiral bands of vortex rolls. Theoretical analysis has shown 
that the instability is of inviscid type and occurs when the point of inflexion in 
the velocity profile perpendicular to the bands coincides with the point of zero 
phase velocity. 

Preliminary experimental results for a decaying pipe flow indicate that the 
initial disturbance which is observed is also a standing wave. This observation, 
coupled with the results for a rotating disk, suggests that the location of the 
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point of inflexion relative to the point of zero velocity is of particular interest. 
The locations of these points for both channel and pipe flow are plotted as a 
function of time in figure 9. It can be seen that the point of zero velocity does 
not move very far from its initial location (y = 1 / 4 3  for a channel, r = 1 /42  
for a pipe), while the point of inflexion moves rapidly from the wall, its initial 
location, towards the centre-line. In  a pipe, these points coincide at  a dimen- 
sionless time t = 0.012. This corresponds to a physical time for the experiment 
(R = 2.5 cm, v = 0.01) of approximately 6 s, which is qualitatively the same 
as the observed time for the appearance of the disturbance. Further experiments 
are in progress to measure more accurately the wavelength of the stationary 
wave instability, the time that it takes to appear and the critical Reynolds 
number for its occurrence. 

Finally, although the results of this study apply only to flows with initially 
Poiseuille profiles, the method can be used equally easily for flows with any 
initial profile. The initial profile directly affects only the primary velocity w 
and, hence, the volume flow defect function f ( t ) .  Since these quantities are 
represented by Fourier series, any initial profile which may be Fourier analysed 
can be easily accommodated. The basic equations for the secondary flow, (3.27) 
and (3.28) or ( 4 . 1 5 ~ )  and (4.15b) for channel or pipe flows, as the case may be, 
are unchanged, the only modification being that the functionf(t) itself is altered. 
The present analysis is thus readily extended to the flow in the entrance regions 
of suddenly blocked channels and pipes provided that the Reynolds number is 
sufficiently high for the streamwise variation of the initial entrance profiles to 
be small over streamwise distances of the order of the channel height or pipe 
diameter. 

The authors wish to express their appreciation to J. T. Stuart for his many 
helpful comments and suggestions. S. Weinbaum was partially supported in 
this research by a Senior Visiting Fellowship from the Scientific Research Council 
of Creat Britain. 

R E F E R E N C E S  

BATCHELOR, G. I(. 1967 An Introduction to Fluid Mechanics, § 4.3. Cambridge University 

CARSLAW, H. S. & JAEGER, J. C. 1959 Conduction of Heat insol ids ,  2nd edn, 0 12.5. Oxford 

FALLER, A. J. 1963 An experimental study of the instability of the laminar Ekman boun- 

GOLDSTEIN, S. 1938 Modern Developments in Fluid nlechanics, vol. 1, chap. 7. Oxford 

GOLDSTEIN, S. & ROSENHEAD, L. 1936 Boundary layer growth. Proc. Camb. Phil. SOC. 32, 

GREGORY, N., STUART, J. T. & WALKER, W. S. 1955 On the stability of three-dimensional 
boundary layers with application to the flow due to a rotating disk. Phil. Trans. A 
248, 155-199. 

KELLY, R. E. 1962 The final approach to steady, viscous flow near a stagnation point 
following a change in free stream velocity. J .  Fluid IMech. 13, 449-464. 

Press. 

University Press. 

dary layer. J .  Fluid Mech. 15, 560-576. 

University Press. 

393-401. 



752 8. Weinbaum and K.  H .  Parker 

LILLY, D. K. 1966 On the instability of Ekman boundary flow. J .  Atmos. Sci. 23, 481- 
494. 

NEREM, R. M. & SEED, W. A. 1972 I n  vivo study of the nature of aortic flow disturbances. 
Cardiovasc. Res. 6, 1-14. 

SCHLICHTING, H. 1934 Laminare Kanaleinlaufstromung. 2. angew. iMath. Mech. 14, 368- 
373. 

SEED, W. A. & WOOD, N. B. 1971 Velocity patterns in the aorta. Cardiovasc. Res. 5, 319- 
330. 

STUART, J. T. 1963 I n  Laminar Boundary Layers (ed. L. Rosenhead), chap. 7, pp. 349- 
408. Oxford: Clarendon Press. 

STUART, J. T .  1971 Unsteady boundary layers. I U T A M  Symp. o n  Unsteady Boundary 
layers (1971). Quebec: Lava1 University Press. 

SZYMANSKI, P. 1932 Quelques solutions exactes des Bquations de l’hydrodynamique du 
fluide visqueux dans le cas d’un tube cylindrique. J .  Math. Pure Appl. 11 (9),  67. 

TOKUDA, N. 1970 Uniformly convergent series solution for unsteady stagnation flows. In 
Fluid Dyn. Tram., vol. 5, part 2, pp. 175-191. Warsaw: Polish Acad. Sci. 

VAN DYKE, M. 1970 Entry flow in a channel. J .  Fluid Mech. 44, 813-823. 
WILSON, S. D. R. 1971 Entry flow in a channel. Part 2. J .  Fluid Mech. 46, 787-799. 


